Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.250
Filtrar
1.
Cell Mol Biol (Noisy-le-grand) ; 70(3): 162-167, 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38650142

RESUMO

Prostate cancer, prevalent among males, is influenced by various molecular factors, including Growth Differentiation Factor 15 (GDF15). Despite its recognized role in multiple tumor types, GDF15's specific involvement in prostate cancer remains insufficiently explored. This study investigates the regulatory function of GDF15 in prostate cancer. To explore GDF15's impact, we established GDF15 knockdown and overexpression models in prostate cancer cells. We quantified mRNA and protein levels using RT-PCR and Western blotting. Functional assays, including CCK8, Transwell, wound healing, and flow cytometry, were employed to evaluate cell proliferation, invasion, migration, and apoptosis. Additionally, the effect of GDF15 on tumor growth was assessed using a metastatic tumor model in nude mice. Elevated GDF15 expression was identified in prostate cancer tissues and cells. The knockdown of GDF15 led to the activation of the MAPK/ERK signaling pathway. C16PAF was found to counteract the inhibitory effects of sh-GDF15 on cell proliferation, invasion, migration, and apoptosis in LNCaP cells. It also reversed the sh-GDF15-induced alterations in the epithelial-mesenchymal transition (EMT) process. In vivo, C16PAF notably mitigated the sh-GDF15-induced suppression of tumor growth. The study demonstrated that sh-GDF15 inhibits cell proliferation, invasion, migration, EMT process, and tumor growth, while it promotes apoptosis. However, these effects were significantly reversed by C16PAF. The study underscores the potential of GDF15 as a target for novel therapeutic interventions in prostate cancer treatment and prevention. These findings illuminate GDF15's multifaceted role in prostate cancer pathogenesis and suggest its viability as a therapeutic target.


Assuntos
Apoptose , Movimento Celular , Proliferação de Células , Transição Epitelial-Mesenquimal , Técnicas de Silenciamento de Genes , Fator 15 de Diferenciação de Crescimento , Sistema de Sinalização das MAP Quinases , Camundongos Nus , Neoplasias da Próstata , Fator 15 de Diferenciação de Crescimento/genética , Fator 15 de Diferenciação de Crescimento/metabolismo , Masculino , Neoplasias da Próstata/patologia , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Humanos , Animais , Linhagem Celular Tumoral , Proliferação de Células/genética , Sistema de Sinalização das MAP Quinases/genética , Apoptose/genética , Transição Epitelial-Mesenquimal/genética , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica , Camundongos , Camundongos Endogâmicos BALB C
2.
J Cancer Res Clin Oncol ; 150(3): 127, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38483604

RESUMO

PURPOSE: Pancreatic cancer (PC) is a highly malignant tumor that poses a severe threat to human health. Brain glycogen phosphorylase (PYGB) breaks down glycogen and provides an energy source for tumor cells. Although PYGB has been reported in several tumors, its role in PC remains unclear. METHODS: We constructed a risk diagnostic model of PC-related genes by WGCNA and LASSO regression and found PYGB, an essential gene in PC. Then, we explored the pro-carcinogenic role of PYGB in PC by in vivo and in vitro experiments. RESULTS: We found that PYGB, SCL2A1, and SLC16A3 had a significant effect on the diagnosis and prognosis of PC, but PYGB had the most significant effect on the prognosis. Pan-cancer analysis showed that PYGB was highly expressed in most of the tumors but had the highest correlation with PC. In TCGA and GEO databases, we found that PYGB was highly expressed in PC tissues and correlated with PC's prognostic and pathological features. Through in vivo and in vitro experiments, we found that high expression of PYGB promoted the proliferation, invasion, and metastasis of PC cells. Through enrichment analysis, we found that PYGB is associated with several key cell biological processes and signaling pathways. In experiments, we validated that the MAPK/ERK pathway is involved in the pro-tumorigenic mechanism of PYGB in PC. CONCLUSION: Our results suggest that PYGB promotes PC cell proliferation, invasion, and metastasis, leading to poor patient prognosis. PYGB gene may be a novel diagnostic biomarker and gene therapy target for PC.


Assuntos
Neoplasias Pancreáticas , Humanos , Biomarcadores , Glicogênio Fosforilase Encefálica/genética , Glicogênio Fosforilase Encefálica/metabolismo , Sistema de Sinalização das MAP Quinases/genética , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/terapia , Prognóstico , Transdução de Sinais/genética
3.
J Orthop Surg Res ; 19(1): 190, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38500202

RESUMO

PURPOSE: To study the effect of miR-150-5p on the osteogenic differentiation of bone marrow-derived mesenchymal stem cells (BMSCs), and further explore the relationship between its regulatory mechanism and irisin. METHODS: We isolated mouse BMSCs, and induced osteogenic differentiation by osteogenic induction medium. Using qPCR to detect the expression of osteogenic differentiation-related genes, western blot to detect the expression of osteogenic differentiation-related proteins, and luciferase reporter system to verify that FNDC5 is the target of miR-150-5p. Irisin intraperitoneal injection to treat osteoporosis in mice constructed by subcutaneous injection of dexamethasone. RESULTS: Up-regulation of miR-150-5p inhibited the proliferation of BMSCs, and decreased the content of osteocalcin, ALP activity, calcium deposition, the expression of osteogenic differentiation genes (Runx2, OSX, OCN, OPN, ALP and BMP2) and protein (BMP2, OCN, and Runx2). And down-regulation of miR-150-5p plays the opposite role of up-regulation of miR-150-5p on osteogenic differentiation of BMSCs. Results of luciferase reporter gene assay showed that FNDC5 gene was the target gene of miR-150-5p, and miR-150-5p inhibited the expression of FNDC5 in mouse BMSCs. The expression of osteogenic differentiation genes and protein, the content of osteocalcin, ALP activity and calcium deposition in BMSCs co-overexpressed by miR-150-5p and FNDC5 was significantly higher than that of miR-150-5p overexpressed alone. In addition, the overexpression of FNDC5 reversed the blocked of p38/MAPK pathway by the overexpression of miR-150-5p in BMSCs. Irisin, a protein encoded by FNDC5 gene, improved symptoms in osteoporosis mice through intraperitoneal injection, while the inhibitor of p38/MAPK pathway weakened this function of irisin. CONCLUSION: miR-150-5p inhibits the osteogenic differentiation of BMSCs by targeting irisin to regulate the/p38/MAPK signaling pathway, and miR-150-5p/irisin/p38 pathway is a potential target for treating osteoporosis.


Assuntos
Células-Tronco Mesenquimais , MicroRNAs , Osteoporose , Animais , Camundongos , Medula Óssea , Cálcio/metabolismo , Diferenciação Celular/genética , Células Cultivadas , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Fibronectinas/genética , Fibronectinas/metabolismo , Fibronectinas/farmacologia , Luciferases/metabolismo , Luciferases/farmacologia , Sistema de Sinalização das MAP Quinases/genética , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/metabolismo , Osteocalcina/metabolismo , Osteogênese/genética , Osteoporose/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Fatores de Transcrição/metabolismo
4.
Gene ; 905: 148234, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38309318

RESUMO

OBJECTIVES: Ameloblastoma (AM), a common odontogenic epithelial tumor, exhibits aggressive growth due to incomplete encapsulation within the jawbone. Postoperative recurrence is a significant concern, closely associated with its invasive nature. We investigate the role of tRNA N-7 methylguanosine (m7G) modification mediated by Methyltransferase-like 1 (METTL1) in AM's invasive growth and prognosis. MATERIALS AND METHODS: METTL1 expression was analyzed in diverse cell lines and clinical AM tissues. Its association with postoperative AM recurrence was examined. Functional experiments included METTL1 gene silencing using shRNA in hTERT-AM cells, assessing cell proliferation, migration, and invasion. Xenograft tumor model was constructed to investigate tumor growth. Molecular mechanisms behind METTL1's role in AM invasiveness were elucidated using Ribosome nascent-chain complex-bound mRNA sequencing (RNC-seq) and experimental analysis. RESULTS: High METTL1 expression was significantly associated with postoperative recurrence in AM. The inhibition of AM development following METTL1 knockdown has been corroborated by experiments conducted both in vitro and in vivo. Analysis of RNC-seq data revealed that downregulated genes were predominantly enriched in the mitogen-activated protein kinase (MAPK) signaling pathway, suggesting that METTL1 may promote AM's invasive growth through the MAPK signaling pathway. CONCLUSION: Our study elucidates the functional role of METTL1 in AM's invasive development and prognosis. High METTL1 expression is linked to postoperative recurrence, and METTL1 appears to promote AM invasiveness through the MAPK signaling pathway. These findings contribute to a better understanding of AM pathogenesis and may guide future therapeutic strategies.


Assuntos
Ameloblastoma , Metiltransferases , Humanos , Ameloblastoma/genética , Linhagem Celular , Proliferação de Células/genética , Sistema de Sinalização das MAP Quinases/genética , Metiltransferases/genética , Metiltransferases/metabolismo
5.
Fungal Genet Biol ; 171: 103874, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38307402

RESUMO

Aspergillus cristatus is a probiotic fungus known for its safety and abundant secondary metabolites, making it a promising candidate for various applications. However, limited progress has been made in researching A. cristatus due to challenges in genetic manipulation. The mitogen-activated protein kinase (MAPK) signaling pathway is involved in numerous physiological processes, but its specific role in A. cristatus remains unclear. In this study, we successfully developed an efficient polyethylene glycol (PEG)-mediated protoplast transformation method for A. cristatus, enabling us to investigate the function of Pmk1, Mpk1, and Hog1 in the MAPK signaling pathway. Our findings revealed that Pmk1, Mpk1, and Hog1 are crucial for sexual reproduction, melanin synthesis, and response to external stress in A. cristatus. Notably, the deletion of Pmk1, Mpk1, or Hog1 resulted in the loss of sexual reproduction capability in A. cristatus. Overall, this research on MAPK will contribute to the continued understanding of the reproductive strategy and melanin synthesis mechanism of A. cristatus.


Assuntos
Proteínas Quinases Ativadas por Mitógeno , Proteínas de Saccharomyces cerevisiae , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Melaninas/genética , Sistema de Sinalização das MAP Quinases/genética , Aspergillus/genética , Aspergillus/metabolismo , Fosforilação , Proteínas de Saccharomyces cerevisiae/metabolismo
6.
Int J Mol Sci ; 25(3)2024 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-38338909

RESUMO

Pancreatic cancer represents a formidable challenge in oncology, primarily due to its aggressive nature and limited therapeutic options. The prognosis of patients with pancreatic ductal adenocarcinoma (PDAC), the main form of pancreatic cancer, remains disappointingly poor with a 5-year overall survival of only 5%. Almost 95% of PDAC patients harbor Kirsten rat sarcoma virus (KRAS) oncogenic mutations. KRAS activates downstream intracellular pathways, most notably the rapidly accelerated fibrosarcoma (RAF)/mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) signaling axis. Dysregulation of the RAF/MEK/ERK pathway is a crucial feature of pancreatic cancer and therefore its main components, RAF, MEK and ERK kinases, have been targeted pharmacologically, largely by small-molecule inhibitors. The recent advances in the development of inhibitors not only directly targeting the RAF/MEK/ERK pathway but also indirectly through inhibition of its regulators, such as Src homology-containing protein tyrosine phosphatase 2 (SHP2) and Son of sevenless homolog 1 (SOS1), provide new therapeutic opportunities. Moreover, the discovery of allele-specific small-molecule inhibitors against mutant KRAS variants has brought excitement for successful innovations in the battle against pancreatic cancer. Herein, we review the recent advances in targeted therapy and combinatorial strategies with focus on the current preclinical and clinical approaches, providing critical insight, underscoring the potential of these efforts and supporting their promise to improve the lives of patients with PDAC.


Assuntos
Carcinoma Ductal Pancreático , Fibrossarcoma , Neoplasias Pancreáticas , Humanos , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Sistema de Sinalização das MAP Quinases/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proteínas Proto-Oncogênicas c-raf/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-raf/metabolismo
7.
J Gene Med ; 26(1): e3649, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38282155

RESUMO

BACKGROUND: Ovarian cancer is one of the most common cancers in women. Profiles changes of microRNAs (miRNAs) are closely linked to malignant tumors. In the present study, we investigated expression of miR-451a in high-grade serous ovarian cancer (HGSOC). We also investigated the potential pathological roles and the likely mechanism of miR-451a in the development of HGSOC using animal models and cell lines. METHODS: Using bioinformatics techniques and a real-time PCR, we analyzed differently expressed miRNAs in HGSOC compared to normal tissue. MTT (i.e. 3-[4, 5-dimethyl thiazol-2-yl]-2,5-diphenyl tetrazolium bromide), EDU (i.e. 5-ethynyl-2'-deoxyuridine) and transwell assays were performed to investigate the effect of miR-451a on the proliferation and migration of HGSOC SKOV-3 cells. A dual luciferase reporter assay was performed to verify the targeting relationship of miR-451 and RAB5A (one of the Rab GTPase proteins that regulates endocytosis and vesicle transport). Also, we analyzed levels of the RAB5A mRNA and protein by real-time PCR, western blotting and immunohistochemistry assays in HGSOC cells and tissues. Finally, we performed in vivo experiments using HGSOC mice. RESULTS: miR-451a was substantially upregulated in HGSOC and associated with favorable clinical characteristics. miR-451a knockdown significantly increased growth and metastasis of HGSOC cell line SKOV-3 through Ras/Raf/mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) signaling. In addition, RAB5A, an early endosome marker, was shown to be a direct target of miR-451a. Moreover, RAB5A is correlated with unfavorable clinical features and shows independent prognostic significance in HGSOC. CONCLUSIONS: We found that the miR-451a/RAB5A axis is associated with tumorigenesis and progression through the Ras/Raf/MEK/ERK pathway, providing prognostic indicators and therapeutic targets for patients with HGSOC.


Assuntos
MicroRNAs , Neoplasias Ovarianas , Proteínas rab5 de Ligação ao GTP , Animais , Feminino , Humanos , Camundongos , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Regulação Neoplásica da Expressão Gênica , Sistema de Sinalização das MAP Quinases/genética , MicroRNAs/genética , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Neoplasias Ovarianas/genética , Proteínas rab5 de Ligação ao GTP/genética
8.
Sci Rep ; 14(1): 124, 2024 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-38167930

RESUMO

To explore the relationship between miR-373 and the occurrence and development of colorectal cancer. Additionally, it aims to predict the potential cellular signaling pathways and regulatory mechanisms in which miR-373 may be involved and provides a theoretical basis and experimental evidence for the clinical application of miR-373 as a potential biomarker, molecular target, and prognostic indicator in colorectal cancer. Real-time quantitative PCR is used to analyze the expression of miR-373 in human colorectal cancer cell lines and normal human colonic epithelial cells. Further validation of the differential expression of miR-373 in colorectal cancer cell lines is being performed. Biological functions such as cell proliferation, invasion and apoptosis are being detected by MTT, CCK-8, transwell, cell cycle analysis, and flow cytometry experiments to verify the changes in the biological behavior of colon cancer cells after overexpression and interference of miR-373 in SW-480 cells and to explore the effects of miR-373 on cell proliferation, invasion, and apoptosis in colon cancer cells. Proteomic analysis is being conducted on proteins extracted from miR-373 overexpressing SW480 cells, and mass spectrometry is used for protein identification. GO, KEGG, and enrichment analysis are being employed to analyze the significantly differentially expressed proteins. The expression levels of pathway-related proteins are being verified using Western blot. Overexpression of miR-373 increased the invasive and metastatic ability of SW-480 cells; knockdown of miR-373 decreased the invasive and metastatic ability of SW-480 cells. However, there was no statistically significant effect on cell proliferation and apoptosis in SW-480 cells. Proteomic analysis identified 78 differentially expressed proteins based on fold change (FC) > 1.2 and P < 0.05. Annotation of differentially changed proteins revealed that the MAPK signaling pathway, PI3K-Akt signaling pathway, and FAK signaling pathway may play crucial roles in the migration and invasion of colorectal cancer. Western blot analysis showed that overexpression of miR-373 significantly increased the levels of p-ERK1/2 in SW480 cells. miR-373 may activate the ERK/MAPK signaling pathway to promote the invasion and migration of colorectal cancer cells.


Assuntos
Neoplasias do Colo , Neoplasias Colorretais , MicroRNAs , Humanos , Sistema de Sinalização das MAP Quinases/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteômica , Linhagem Celular Tumoral , Movimento Celular/genética , Neoplasias do Colo/patologia , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia
9.
Mol Biotechnol ; 66(1): 102-111, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37041423

RESUMO

Retinoblastoma (RB) is a malignant ocular cancer that affects children. Several microRNAs (miRNAs) have been implicated in RB regulation. The present study aimed to investigate the role of miR-4529-3p in RB pathogenesis. Scratch, Transwell, and Cell Counting Kit (CCK)-8 assays were conducted to assess the migratory, invasive, and proliferative abilities of RB cells. The expression levels of miR-4529-3p, RB1, and ERK pathway-related proteins were analyzed using western blotting and real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR). Target relationships were verified using dual-luciferase reporter experiments. A murine RB model was developed to analyze the effects of miR-4529-3p on RB tumor growth in vivo. Our experiments revealed high levels of miR-4529-3p and low levels of RB1 in RB tissues. Functional analyses revealed that the migratory, invasive, and proliferative abilities of RB cells were repressed by miR-4529-3p inhibition. Similarly, p-ERK 1/2 protein levels were suppressed by miR-4529-3p inhibition. Furthermore, downregulation of miR-4529-3p limited tumor growth in vivo. Mechanistically, miR-4259-3p targets RB1. Interestingly, RB1 silencing abrogated the alleviative effects of miR-4529-3p downregulation in RB cells. MiR-4529-3p promotes RB progression by inhibiting RB1 and activating the ERK pathway. This evidence suggests that the miR-4529-3p/RB1 regulatory axis may be a prospective target for RB treatment in clinical settings.


Assuntos
MicroRNAs , Neoplasias da Retina , Retinoblastoma , Criança , Humanos , Animais , Camundongos , Retinoblastoma/genética , Retinoblastoma/metabolismo , Retinoblastoma/patologia , Sistema de Sinalização das MAP Quinases/genética , Linhagem Celular Tumoral , MicroRNAs/genética , MicroRNAs/metabolismo , Transdução de Sinais , Neoplasias da Retina/genética , Neoplasias da Retina/metabolismo , Neoplasias da Retina/patologia , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Movimento Celular/genética , Ubiquitina-Proteína Ligases/metabolismo , Proteínas de Ligação a Retinoblastoma/genética , Proteínas de Ligação a Retinoblastoma/metabolismo
10.
FEBS J ; 291(7): 1483-1505, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38143314

RESUMO

Alterations in glycosylation are associated with breast tumor formation and progression. Nevertheless, the specific functions and mechanisms of the human major UDP-galactose transporter-encoding gene solute carrier family 35 member A2 (SLC35A2) in breast invasive carcinoma (BRCA) have not been fully determined. Here, we report that SLC35A2 promotes BRCA progression by activating extracellular signal regulated kinase (ERK). SLC35A2 expression and prognosis-predictive significance in pan-cancer were evaluated using public databases. The upstream non-coding RNAs (ncRNAs) of SLC35A2 were analyzed, and their expression and regulations were validated in breast tissues and cell lines by a quantitative PCR and dual-luciferase assays. We used bioinformatic tools to assess the link between SLC35A2 expression and immune infiltration and performed immunohistochemistry for validation. Cell Counting Kit-8, 5-ethynyl-2'-deoxyuridine, transwell, flow cytometer and western blotting were used to assess the proliferation, motility, cell cycle and apoptosis of BRCA cells in vitro. The xenograft models were constructed to assess the effect of SLC35A2 on BRCA tumor growth in vivo. The results indicated that SLC35A2 expression was upregulated and linked to an unfavorable prognosis in BRCA. The most likely upstream ncRNA-associated pathway of SLC35A2 in BRCA was the AC074117.1/hsa-let-7b-5p axis. SLC35A2 expression had positive correlations with the presence of Th2 cells, regulatory T cells and immune checkpoints. Knockdown of SLC35A2 could reduce BRCA cell proliferation, motility, and cause G2/M arrest and cell apoptosis via ERK signaling. Moreover, ERK activation can rescue the inhibitory effects of knockdown SLC35A2 in BRCA. In conclusion, AC074117.1/hsa-let-7b-5p axis-mediated high expression of SLC35A2 acts as a tumor promoter in BRCA via ERK signaling, which provides a potential target for BRCA treatment.


Assuntos
Neoplasias da Mama , MicroRNAs , Humanos , Feminino , Neoplasias da Mama/patologia , MAP Quinases Reguladas por Sinal Extracelular , Sistema de Sinalização das MAP Quinases/genética , Apoptose/genética , Linhagem Celular Tumoral , Pontos de Checagem da Fase G2 do Ciclo Celular , Proliferação de Células/genética , MicroRNAs/genética , MicroRNAs/metabolismo
11.
Oncol Rep ; 51(2)2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38099424

RESUMO

Uveal melanoma (UM) is the most common intraocular malignant tumor in adults, with a lack of effective treatment for metastasis and a poor prognosis. Stimulator of interferon genes (STING, also known as TMEM173) plays an important role in tumor development by regulating cell proliferation, metastasis and other cellular processes. However, the function of STING in UM remains unclear and requires further investigation. The present study analyzed the expression status of STING to elucidate the mechanisms underlying UM. The correlation between STING and the prognosis of UM was evaluated based on UM RNA­seq data and clinical information extracted from The Cancer Genome Atlas database. Quantification of STING in UM cell lines and tissues was performed using the Wes Separation protein immunoassay. The effects of STING on the proliferation, migration and invasion of UM cells were investigated using Cell Counting Kit­8, Transwell and wound healing experiments. Survival analysis demonstrated that high levels of STING in UM tissues indicated a poor prognosis. The expression of STING in UM tissues was higher than that in the choroid membranes. Furthermore, it was found that downregulation of STING expression in UM cells suppressed migration and invasion, whereas overexpression of STING significantly promoted migration and invasion. Notably, STING had no significant effect on UM cell proliferation. It was also identified that STING positively upregulated the phosphorylation of p38 mitogen­activated protein kinase (p38­MAPK) in UM cells, enhancing cell migration and invasion, which the p38­MAPK inhibitor SB203580 reversed. Finally, the results of the present study demonstrated that high STING expression in UM indicates a poor prognosis. STING was revealed to promote the migration and invasion of UM cells through p38­MAPK signaling.


Assuntos
Melanoma , Neoplasias Uveais , Adulto , Humanos , Linhagem Celular Tumoral , Melanoma/patologia , Neoplasias Uveais/genética , Neoplasias Uveais/metabolismo , Neoplasias Uveais/patologia , Sistema de Sinalização das MAP Quinases/genética , Proliferação de Células/genética
12.
PLoS One ; 18(10): e0286040, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37856433

RESUMO

Activation of Map kinase/Erk signalling downstream of fibroblast growth factor (Fgf) tyrosine kinase receptors regulates gene expression required for mesoderm induction and patterning of the anteroposterior axis during Xenopus development. We have proposed that a subset of Fgf target genes are activated in the embyo in response to inhibition of a transcriptional repressor. Here we investigate the hypothesis that Cic (Capicua), which was originally identified as a transcriptional repressor negatively regulated by receptor tyrosine kinase/Erk signalling in Drosophila, is involved in regulating Fgf target gene expression in Xenopus. We characterise Xenopus Cic and show that it is widely expressed in the embryo. Fgf overexpression or ectodermal wounding, both of which potently activate Erk, reduce Cic protein levels in embryonic cells. In keeping with our hypothesis, we show that Cic knockdown and Fgf overexpression have overlapping effects on embryo development and gene expression. Transcriptomic analysis identifies a cohort of genes that are up-regulated by Fgf overexpression and Cic knockdown. We investigate two of these genes as putative targets of the proposed Fgf/Erk/Cic axis: fos and rasl11b, which encode a leucine zipper transcription factor and a ras family GTPase, respectively. We identify Cic consensus binding sites in a highly conserved region of intron 1 in the fos gene and Cic sites in the upstream regions of several other Fgf/Cic co-regulated genes, including rasl11b. We show that expression of fos and rasl11b is blocked in the early mesoderm when Fgf and Erk signalling is inhibited. In addition, we show that fos and rasl11b expression is associated with the Fgf independent activation of Erk at the site of ectodermal wounding. Our data support a role for a Fgf/Erk/Cic axis in regulating a subset of Fgf target genes during gastrulation and is suggestive that Erk signalling is involved in regulating Cic target genes at the site of ectodermal wounding.


Assuntos
Sistema de Sinalização das MAP Quinases , Receptores de Fatores de Crescimento de Fibroblastos , Animais , Fatores de Crescimento de Fibroblastos/genética , Fatores de Crescimento de Fibroblastos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Sistema de Sinalização das MAP Quinases/genética , Receptores Proteína Tirosina Quinases/metabolismo , Receptores de Fatores de Crescimento de Fibroblastos/genética , Receptores de Fatores de Crescimento de Fibroblastos/metabolismo , Transdução de Sinais/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Xenopus laevis/metabolismo
13.
Clin. transl. oncol. (Print) ; 25(10): 2938-2949, oct. 2023. graf
Artigo em Inglês | IBECS | ID: ibc-225075

RESUMO

Renal cell carcinoma (RCC) with poor prognosis and high incidence rate is a common malignant disease. Current therapies could bring little benefit for the patients with advanced-stage RCC. PDIA2 is an isomerase responsible for protein folding and its role in cancer including RCC is under investigation. In this study, we found that PDIA2 was expressed much higher in RCC tissues than the control but the methylation level of PDIA2 promoter was lower based on the TCGA data. Patients with higher PDIA2 expression exerted worse survival. In clinical specimen, PDIA2 expression was correlated to patients’ clinical factors such as TNM stage (I/II vs III/IV, p = 0.025) and tumor size (≤ 7 cm vs > 7 cm, p = 0.004). Moreover, K-M analysis showed that PDIA2 was associated with patients’ survival in RCC. PDIA2 was expressed much higher in cancer cells A498 than 786-O than that in 293 T cells. After PDIA2 was knocked down, cell proliferation, migration and invasion was potently inhibited. But cell apoptotic rate increased reversely. Furthermore, the efficacy of Sunitinib on RCC cells was strengthened after PDIA2 knockdown. In addition, knockdown of PDIA2 gene leaded to downregulation of levels of JNK1/2, phosphorylated JNK1/2, c-JUN, and Stat3. But this inhibition was partially released when JNK1/2 was overexpressed. In consistent, cell proliferation was also partially recovered. In summary, PDIA2 plays important role in progression of RCC and JNK signaling pathway might be regulated by PDIA2. This study suggests PDIA2 as a candidate target for therapy of RCC (AU)


Assuntos
Humanos , Sistema de Sinalização das MAP Quinases/genética , Carcinoma de Células Renais/patologia , Carcinoma de Células Renais/genética , Neoplasias Renais/patologia , Neoplasias Renais/genética , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Prognóstico
14.
Mol Biol Rep ; 50(11): 8985-8993, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37716918

RESUMO

BACKGROUND: The incidence rate of ovarian carcinoma (OC) is the third of the female reproductive system malignant tumors, while its mortality rate ranks first among causes of female reproductive system tumor related death in the world. METHODS: In the present research, we investigated the specific role of LIMD2 through LIMD2 knockdown in OC cells. RESULTS: The results of online analysis and expression detection proved that LIMD2 was up-regulated in human OC tissues and cells. Knockdown of LIMD2 inhibited the proliferation, migration and invasion in OC cells. LIMD2 knockdown promoted the apoptosis, as well as the expression of Cleaved-Caspase3 and Bax. Importantly, knockdown of LIMD2 promotes cell autophagy. LC3-II/I ratio and Beclin1 expression increased in LIMD2 knockdown cells, while P62 expression declined in LIMD2 knockdown cells. Additionally, the phosphorylation of ERK1/2 was inhibited by the knockdown of LIMD2 in SKOV3 and OVCAR3 cells. CONCLUSION: Knockdown of LIMD2 inhibits cell proliferation, migration, invasion and autophagy, and promotes the apoptosis through the ERK1/2 signaling pathway, suggesting that LIMD2-siRNA may be an effective molecule to prevent OC progression.


Assuntos
Neoplasias Ovarianas , Humanos , Feminino , Neoplasias Ovarianas/patologia , Apoptose/genética , Sistema de Sinalização das MAP Quinases/genética , Linhagem Celular Tumoral , Carcinoma Epitelial do Ovário/genética , Proliferação de Células/genética , Movimento Celular/genética , Regulação Neoplásica da Expressão Gênica
15.
Cancer Genet ; 278-279: 71-78, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37729778

RESUMO

We investigated the effect of stem cell marker dopamine receptor D2 (DRD2) on the proliferation of hormone-receptor-negative breast cancer cells. High-throughput DNA methylation sequencing on an 850 K chip was used to pre-screen breast cancer tissues with significant methylation differences. The expression of DRD2 in breast cancer and normal breast tissues, and clinical risk factors, were detected by pyrophosphoric acid validation and immunohistochemistry. In vitro and in vivo experiments verified the possible molecular signaling pathways. DRD2 promoter region was hypomethylated in hormone-receptor-negative breast cancer or with high-risk factors compared to the normal tissues. The proliferation of breast cancer cells was enhanced after DRD2 was upregulated and decreased after DRD2 was downregulated. In vivo experiments found that tumor growth and the expression of antigen KI-67 (Ki67) and the cluster of differentiation 31 (CD31) were improved by the overexpression of DRD2 and inhibited by the down expression of DRD2. In vivo and in vitro experiments demonstrated the phosphorylation of filamin A and extracellular signal-regulated kinase (FLNA-ERK) was influenced by the expression of DRD2, suggesting DRD2 plays a role in the FLNA-ERK signaling pathway. Methylation inhibitors (5-aza-2-deoxycytidine, 5-azadc) partially reversed the inhibitory effect of DRD2 down expression on cell proliferation, migration, and tumor growth in animal models, indicating that inhibition of DRD2 methylation promotes cancer development. This study demonstrated the DRD2 promoter region is hypomethylated in hormone-receptor-negative breast cancer or with high-risk factors. The methylation status of the DRD2 promoter and FLNA-ERK signaling pathway and the DRD2 expression in breast cancer treatment need to be considered.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular , Neoplasias de Mama Triplo Negativas , Animais , Humanos , Filaminas/genética , Filaminas/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Sistema de Sinalização das MAP Quinases/genética , Metilação de DNA/genética , Hormônios , Receptores de Dopamina D2/genética , Receptores de Dopamina D2/metabolismo
16.
Biochim Biophys Acta Gene Regul Mech ; 1866(4): 194988, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37739217

RESUMO

Mitogen Activated Protein Kinase (MAPK) is one of the most well characterized cellular signaling pathways that controls fundamental cellular processes including proliferation, differentiation, and apoptosis. These cellular functions are consequences of transcription of regulatory genes that are influenced and regulated by the MAP-Kinase signaling cascade. MAP kinase components such as Receptor Tyrosine Kinases (RTKs) sense external cues or ligands and transmit these signals via multiple protein complexes such as RAS-RAF, MEK, and ERKs and eventually modulate the transcription factors inside the nucleus to induce transcription and other regulatory functions. Aberrant activation, dysregulation of this signaling pathway, and genetic alterations in any of these components results in the developmental disorders, cancer, and neurodegenerative disorders. Over the years, the MAPK pathway has been a prime pharmacological target, to treat complex human disorders that are genetically linked such as cancer, Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. The current review re-visits the mechanism of MAPK pathways in gene expression regulation. Further, a current update on the progress of the mechanistic understanding of MAPK components is discussed from a disease perspective.


Assuntos
Neoplasias , Doenças Neurodegenerativas , Humanos , Proteínas Quinases Ativadas por Mitógeno , Sistema de Sinalização das MAP Quinases/genética , Neoplasias/genética , Neoplasias/tratamento farmacológico , Doenças Neurodegenerativas/genética , Expressão Gênica
17.
Kaohsiung J Med Sci ; 39(11): 1077-1086, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37658700

RESUMO

Non-small cell lung cancer (NSCLC) causes high mortality worldwide; however, its molecular pathways have not been fully investigated. The relationship between FOXA1 and CDC5L as well as their roles in NSCLC have not been comprehensively studied. Clinical tissues were collected from 78 NSCLC patients for clinical studies. The BEAS-2B human normal lung epithelial cell line and the A549, Calu-3, H526 and H2170 human NSCLC cell lines were used for in vitro studies. sh-FOXA1 and oe-CDC5L constructs were used to generate knockdown and overexpression models, respectively. The CCK-8 assay was used to analyze cell viability. The cell cycle and apoptosis were evaluated by flow cytometry analysis. The relationship between FOXA1 and CDC5L was demonstrated using dual-luciferase and ChIP assays. Gene levels were examined via immunohistochemistry, qRT-PCR and western blot analysis. FOXA1 levels were increased in NSCLC clinical tissues and cell lines. Depletion of FOXA1 increased the apoptosis rate and increased the proportion of cells in G2/M phase. In addition, we demonstrated that FOXA1 was directly bound to the promoter of CDC5L and that depletion of FOXA1 inhibited CDC5L expression. Overexpression of CDC5L induced ERK1/2 phosphorylation, induced JAK2 phosphorylation, inhibited cell apoptosis, prolonged S phase, and significantly reversed the effects of FOXA1 knockdown on the progression of NSCLC. The present study demonstrated that FOXA1 prolongs S phase and promotes NSCLC progression through upregulation of CDC5L and activation of the ERK1/2 and JAK2 pathways.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , MicroRNAs , Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Regulação para Cima/genética , Fase S , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Sistema de Sinalização das MAP Quinases/genética , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Apoptose/genética , MicroRNAs/genética , Linhagem Celular Tumoral , Movimento Celular , Fator 3-alfa Nuclear de Hepatócito/genética , Fator 3-alfa Nuclear de Hepatócito/metabolismo , Janus Quinase 2/genética , Janus Quinase 2/metabolismo
18.
J Biol Chem ; 299(9): 105115, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37527777

RESUMO

Erythropoietin-producing hepatoma (Eph) receptor tyrosine kinases regulate the migration and adhesion of cells that are required for many developmental processes and adult tissue homeostasis. In the intestinal epithelium, Eph signaling controls the positioning of cell types along the crypt-villus axis. Eph activity can suppress the progression of colorectal cancer (CRC). The most frequently mutated Eph receptor in metastatic CRC is EphB1. However, the functional effects of EphB1 mutations are mostly unknown. We expressed and purified the kinase domains of WT and five cancer-associated mutant EphB1 and developed assays to assess the functional effects of the mutations. Using purified proteins, we determined that CRC-associated mutations reduce the activity and stability of the folded structure of EphB1. By mammalian cell expression, we determined that CRC-associated mutant EphB1 receptors inhibit signal transducer and activator of transcription 3 and extracellular signal-regulated kinases 1 and 2 signaling. In contrast to the WT, the mutant EphB1 receptors are unable to suppress the migration of human CRC cells. The CRC-associated mutations also impair cell compartmentalization in an assay in which EphB1-expressing cells are cocultured with ligand (ephrin B1)-expressing cells. These results suggest that somatic mutations impair the kinase-dependent tumor suppressor function of EphB1 in CRC.


Assuntos
Neoplasias Colorretais , Receptor EphB1 , Animais , Humanos , Neoplasias Colorretais/genética , Neoplasias Colorretais/fisiopatologia , Mutação , Receptor EphB1/genética , Receptor EphB1/metabolismo , Transdução de Sinais/fisiologia , Linhagem Celular , Ativação Enzimática/genética , Estabilidade Proteica , Sistema de Sinalização das MAP Quinases/genética , Movimento Celular/genética
19.
Clin Exp Med ; 23(8): 5269-5279, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37572153

RESUMO

ARAF mutations have been identified in a limited subset of patients with Langerhans cell histiocytosis (LCH), a rare disorder characterized by abnormal proliferation of Langerhans cells. LCH is primarily instigated by mutations in the mitogen-activated protein kinase (MAPK) signaling pathway, with BRAFV600E and MAP2K1 mutations constituting most cases. ARAF mutations in LCH highlight the heterogeneity of the disease and provide insights into its underlying molecular mechanisms. However, the occurrence of ARAF-positive LCH cases is extremely rare, with only two reported globally. Although they may be linked to a more aggressive form of LCH and a more severe clinical progression, the clinical significance and functional consequences of these mutations remain uncertain. We performed next-generation sequencing (NGS) to explore driver mutations in 148 pediatric LCH patients and recognized a series of mutations, including an identical novel somatic ARAF mutation, c.1046_1051delAGGCTT (p.Q349_F351delinsL), in four pediatric LCH patients. It was considered an ARAF hotspot mutation. All reported ARAF-positive patients worldwide exhibited characteristic pathological features of LCH, albeit with involvement across multiple systems. In vitro functional studies showed that this mutation could trigger the MAPKinase pathway and phosphorylate its downstream effectors MEK1/2 and ERK1/2 (relatively weaker than BRAFV600E). Over-activation of mutant A-Raf kinase could be inhibited by the BRAF inhibitor vemurafenib. LCH is uncommon, and ARAF mutation is even rarer. In our study, we have identified a novel hotspot somatic ARAF mutation, which has been verified through functional analysis to be an activating mutation. LCH patients with ARAF mutation typically have an unfavorable prognosis due to limited treatment experiences, although they do not exhibit a high relapse rate. To aid in the development of personalized treatment approaches and prognostic markers for LCH patients, it is recommended to conduct typical pathological and immunohistochemical examinations, as well as genetic tests utilizing a targeted gene panel or whole exome sequencing (WES), for LCH diagnosis, thereby promoting the use of inhibitor treatment strategies.


Assuntos
Histiocitose de Células de Langerhans , Criança , Humanos , Histiocitose de Células de Langerhans/diagnóstico , Histiocitose de Células de Langerhans/genética , Histiocitose de Células de Langerhans/tratamento farmacológico , Mutação , Sistema de Sinalização das MAP Quinases/genética , Inibidores de Proteínas Quinases/uso terapêutico , Vemurafenib/uso terapêutico , Proteínas Proto-Oncogênicas B-raf/genética
20.
Cancer Sci ; 114(10): 3972-3983, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37607779

RESUMO

Carcinoma cells possess high proliferative and invasive potentials and exhibit a resilience against stresses, metabolic disorder, and therapeutic efforts. These properties are mainly acquired by genetic alterations including driver gene mutations. However, the detailed molecular mechanisms have not been fully elucidated. Here, we provide a novel mechanism connecting oncogenic signaling and the tumorigenic properties by a transforming growth factor-ß1-stimulated clone 22 (TSC-22) family protein, THG-1 (also called as TSC22D4). THG-1 is localized at the basal layer of normal squamous epithelium and overexpressed in squamous cell carcinomas (SCCs). THG-1 knockdown suppressed SCC cell proliferation, invasiveness, and xenograft tumor formation. In contrast, THG-1 overexpression promoted the EGF-induced proliferation and stratified epithelium formation. Furthermore, THG-1 is phosphorylated by the receptor tyrosine kinase (RTK)-RAS-ERK pathway, which promoted the oncogene-mediated tumorigenesis. Moreover, THG-1 involves in the alternative splicing of CD44 variants, a regulator of invasiveness, stemness, and oxidative stress resistance under the RTK pathway. These findings highlight the pivotal roles of THG-1 as a novel effector of SCC tumorigenesis, and the detection of THG-1 phosphorylation by our established specific antibody could contribute to cancer diagnosis and therapy.


Assuntos
Carcinoma de Células Escamosas , Humanos , Carcinogênese/genética , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Sistema de Sinalização das MAP Quinases/genética , Oncogenes/genética , Fosforilação , Fatores de Transcrição/genética , Animais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...